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FOREWORD

This technical summary report on IITRI Project No. K6055,
"Feasibility Study of Techniques to Protect Mechanisms Operating
in Space from Malfunction," covers the work performed during
the period June 28, 1963 to June 27, 1964. The work was
sponsored by the National Aeronautics and Space Administration,
George C. Marshall Space Flight Center under Contract NAS8-11014,
with Dr. W. R. Eulitz acting as the contracting officer's

technical representative.

This work was performed by the Fluid Systems and Lubrica-
tion Section of the Mechanical Engineering Division, under the
management of Mr. F. Iwatsuki. Principal investigator was
Mr. W. E. Jamison. Support was provided by Drs. C. Riesz and
A. Dravnieks and Mr. H. Weber of the Chemistry Research Division
for the contact potential measurements and by Drs. P.R.V. Evans
and R. Elliott and Mr. D. Warwick of the Metals Research Division

in the preparation and analysis of the experimental materials.
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FEASIBILITY STUDY OF TECHNIQUES TO PROTECT
MECHANISMS OPERATING IN SPACE FROM MALFUNCTION

ABSTRACT 22 jlb/é

A literature survey and analysis of currently available
anti-friction techniques for space mechanisms has been con-
ducted to determine their operational characteristics and limit-
ations in terms of environmental parameters. These data are
presented in a form useful to designers with direct hardware

responsibilities.

The techniques are assessed for their underlying theoretical
principles and predictions are made of their performance

potentials.

It is concluded that significant improvements in perform-
ance of space mechanisms must be preceded by a better under-
standing and control of friction and wear properties of inter-
faces. Specific recommendations are made for research and

development to accomplish this.
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.

FEASIBILITY STUDY OF TECHNIQUES TO_ PROTECT MECHANISMS
OPERATING IN SPACE FROM MALFUNCTION

I. INTRODUCTION

A. Purpose of the Study

The purpose of this study is two-fold. First, an attempt
has been made to catalogue existing anti-friction techniques
and materials for space mechanisms and to define their opera-
tional characteristics and limitations in terms of environ-
mental parameters. These data are presented in a form useful

to designers and engineers with direct hardware responsibilities.

The second, and perhaps more important objective is a
critical analysis of current space lubrication practices. Each
anti-friction technique and each material is appraised for the
fundamental principle by which friction and wear are reduced.
The soundness of the theory and the extent to which it applies
in practice are assessed. Predictions are made of the ultimate

limitations of the various techniques and materials.

This analysis will be most useful to the long-range planners
whose responsibility is to assure that low friction and wear
techniques and materials will be available to meet future space

vehicle requirements.

B. Scope

It is assumed that the reader is familiar with the space
environmental parameters and their effect on mechanical com-
ponents. These are thoroughly documented elsewhere(l_6), as
are the techniques currently popular for lubricating space

devices(7'll)o

This report is an assessment of these techniques for pro-
viding effective. reliable operation of devices to meet

current and future space hardware requirements. The evaluation
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is based on the theoretical principles underlying each techni-
que, and predictions of utility are made from both environ-
mental test data and from the theoretical limitations of the

technique.

For the most part, it is assumed that encapsulating or
otherwise shielding the mechanisms is impractical. Such
obvious techniques as hermetic sealing are excluded from this

study.

II. PERFORMANCE ANALYSIS OF EXISTING ANTI-FRICTION TECHNIQUES

A. Operational Reguirements

In order to fulfill the objectives of present and future
extraterrestrial flights, mechanical components must Operate

in the range of conditions listed in Table 1.

TABLE 1 - OPERATIONAL REQUIREMENTS FOR SPACE

MECHANISMS
-
Min. Expected Max. Expected Value
Value :
%
Temperature 20°K 1650°K
Load Capacity 0 141 kg/mm2 {
(200,000 psi) i
Life Few Hours 30,000 Hours
Environmental 760 Torr lO'l3 Torr
Pressure
Speed Few cps (rpm) 1266 cps (100,000 rpm)
Reliability 98% 100%
11T RESEARCH INSTITUTE
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In addition to those listed. other parameters which must

be considered in the design of space mechanisms include:

e

Friction level

Type of motion

Load to weight ratio

Radiation resistance

Vibration resistance

Auxiliary equipment requirements
Power requirements

Pre-launch environment and handling

o

8

e

o~k W
o

©

Of course., no single device will be subjected to all of
the operational extremes listed in Table 1. However, require-
ments do exist for nuclear power generator turbine bearings
which will operate at tens of thousands of rpm for years in
a high radiation flux, and for airframe control hinges which
may sit motionless at lO'13 torr and 20°K for months before

they must operate in a searing 1600°K reentry.

B. Performance Levels of Exilsting Anti-TFricticon TsCuiigues

The techniques by which designers may effect low friction

operation of mechanisms are catalogued in the following

categories:
1. 0il lubricated devices (Boundary lubrication)
2. Unlubricated devices
3. Solid film lubricated devices
4. Flexure devices
5. Electric and magnetic support
6. Fluid film lubricated devices (Hydrodynamic, self

acting. etc.)

Each technique is discussed in detail in Section IV.
This section discusses only the optimum values of each class

to establish comparative performance levels.
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1. Temperature

Figure 1 shows the operating temperature ranges for the
various classes of anti-friction techniques. Ceramic and solid
film lubricated bearings operate well at cryogenic temperatures:
most test data have been obtained at liquid nitrogen tempera-
tures (77°K) with little testing at liquid hydrogen temperatures

(20°K). Gas and superconducting magnetic bearings offer poten-
tial in this area for light loads.

At the high temperatures, only ceramic and gas bearings can
presently satisfy requirements for continuous rotary motion.
The poor wear life and low reliability of ceramics and the high
weight penalty associated with gas bearing systems points out

the need for development progress in this area.

Lower Required Upper Required
Limit Limit
Oil Lubricated | I
Devices
' |
Unlubricated Organ1c&Compos1te1 \
Materials Ceramics & Cermets |
. I
Solid Film l
Lubricated Devices ‘
L
| 3
Flexure Devices :
! I
Electric & Magnetic |
Supports | '
. . \ igqui
Fluid Film Lubricated |. Liquid $
Devices Gas R ;
|
l i i [ [l
1 |

. ! !
0 400 800 1200 1600

Temperature (°K)

Fig. 1 TEMPERATURE CAPABILITIES OF ANTI-FRICTION DEVICES
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2. Load Capacity

Figure 2 shows the maximum load capacity for the various
anti-friction techniques. Although most mechanisms can be
designed to operate within the load capability of existing tech-
niques, the requirement for 200,000-psi bearings cannot be satis-
fied using existing materials. Since wear life is closely
related to load capacity for most lubrication techniques, any

improvements in maximum operating stress levels will probably
reflect increased life and reliability.

Upper Required

Limit
0il Lubricated |
Devices
1
Composite I
Unlubricated :
Materials Ceramic |
Solid Film
Lubricated Devices l
Electric and Perm. Mgg. l
Magnetic Supports Electromag.
Superconducting l
Electric |
Electret |
Fluid Film Self Acting Liquid |
Lubricated Devices | = | Self Acting Gas !
'Ext. Press. Liquid & Gas J
1 o | ! ) 1 1 ] } ]
AR L Tt 1 |
0.1 1 10 10% 103 10% 10° 10°
Load (psi)

Fig. 2 LOAD CAPABILITIES OF ANTI-FRICTION DEVICES
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3. Life

The life of mechanical components is usually a function
of load, speed, environmental conditions and material properties.
Since the operating conditions vary over extremes for different
applications, only a qualitative assessment of the various
techniques can be performed. The life of 0il lubricated de-
vices in space is related to the rate of loss of lubricant
due to evaporation. Using reservoir techniques, life can be
extended indefinitely. Ceramics show only moderate wear rates,
but failure of ceramic bearings is usually due to catastrophic
disintegration; an unpredictable event. Composites and solid
film lubricants can be made to last thousands of hours in high
vacuum chambers under mild operating conditions, but lives of
30,000 hours probably cannot be expected. Flexure devices
offer infinite life, but their utility is limited. Complete
separation of bearing elements by fluid film or electric and

magnetic support also permits extended life.

4. Environmental Pressure

The empirical derivation of our lubrication, friction and
wear technology, coupled with our poor understanding of
materials behavior in ultra high vacua, makes prediction of
the effects of vacuum on mechanisms difficult. Such gross
mechanisms as evaporation, dissociation, etc. have been
studied for their influence on bearing operation. However,
it is becoming clear that the interaction of bearing surfaces
and lubricants with microquantities of contaminating species
plays a profound role in promoting low friction and wear.
Long term operation in the extreme vacuum environment may de-
pPlete these microconstituents in otherwise satisfactory
systems. A further understanding of first principles of sur-
face physics is essential before the effects of space vacuum

on mechanisms can be predicted.
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5. Speed

Figure 3 shows the speed ranges of the
which can provide continucous rotary motion.
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6. Reliability

The reliability of a mechanism is affected by the number
of active components involved, the stress level and the
number of modes of failure. It is usually predicted from
statistical analysis of large numbers of test data. Since
only meager test data are available on the particular space

mechanisms studied here, only a qualitative assessment of

reliability is stated here, as shown in Table 2.

TABLE 2 - RELIABILITY OF ANTI-FRICTION MECHANISMS

Mechanisms Reliability
. 0il Lubricated Devices Excellent
. Unlubricated Devices
a. Organics & Composites Good
b. Ceramics & Cermets Poor

3. Solid Film Lubricated Devices Fair to Good
4. Flexure Devices Excellent
5. Electric & Magnetic Support

a. Permanent Magnet Excellent

b. Electromagnet Good

c. Superconducting Poor

d. Electric Good

e. Electret Excellent
6. Fluid Film Lubricated Devices

a. Self-acting Liquid Excellent

b. Externally Pressurized Liquid Good

c. Self-acting Gas Good

d. Externally Pressurized Gas Good

IIT RESEARCH INSTITUTE
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7. Friction

No operational requirements of friction level have been
established. This is not because there is no need for low
friction. On the contrary, friction in gyro spin bearings are
a major source of instrument error and frictional losses in ve-
hicle bearings consume precious power and generate undesirable
heat. It is because friction is poorly understood that engineers
will accept and work with whatever friction level exists in

nature.

In cases of sliding mechanisms, friction coefficients be-
low 0.1 are usually acceptable and can be provided by any of
the lubrication techniques discussed above if temperature ex-
tremes are avoided. For higher temperatures, designers must
accept friction coefficients of 0.2 to 0.5 (and higher) with
currently available techniques. Rolling element bearings pro-
vide a tenfold reduction in friction, but also decrease re-
liability and load capacity. It is only by using the techniques
which provide complete separation of bearing element that really

low values of friction can be obtained.

C. Operational Requirements Not Fulfilled

It can be seen that the operational requirements listed in
Table 1 are not completely satisfied using existing anti-friction
techniques. The high temperature and load capacity deficiencies
are related to bulk material properties. Materials currently
exist which will withstand these extremes, but they have un-
desirable friction and wear characteristics. The life, speed
and reliability deficiencies are caused by friction and wear
effects. It would seem, then, that major improvements in
space bearing performance must be preceded by better under-
standing and control of friction and wear properties of

materials. This is discussed in the next section.
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ITI. PREREQUISITE FOR FUTURE SPACE MECHANISM DEVELOPMENT-
UNDERSTANDING THE NATURE OF FRICTION

A, Theoretical Considerations

The energy expended in overcoming the resistance to motion
of two bodies in loaded contact is dissipated in three modes:
(1) displacement of bulk materials, (2) the rupturing of ad-
hesive bonds between the bodies, and (3) hysteresis losses in
bulk elastic deformation. It is the second of these which is
the prime source of friction in mechanical devices (viscous
shear of liquid lubricants is seen to be a composite of all
three modes; however. this discussion is limited to solid phase
materials). The total friction developed in sliding is simply
a summation of the strength of each bond in the direction of
motion, summed over the total number of bonds. ©On a molecular
level, these bonds are seen to arise from the interaction of
the electrostatic and electromagnetic fields of the individual
atoms. The fields establish both attractive and repulsive
forces between the atoms. Since the attractive forces extend
over much longer distance than the repulsive forces, the re-
sultant force for any two bodies in close proximity is one of
attraction. If the field interactions involve sharing of
electrons, the bonds will be strong (metallic, ionic, covalent).
If no electrons are‘shared5 the bonds will be weak (van der

Waal's, hydrogen bonding, etc.).

It seems logical, then, that friction performance of any
two materials in contact could be predicted from a knowledge
of the how their fields interact. At present, this can be done
only in a qualitative manner. Some of the limitations on the
development of this techniques are listed below:
1. The interactions are statistical in nature. The
statistics describing the interactions of poly-

crystalline materials in non-equilibrium situations
are not fully developed.

IIT RESEARCH INSTITUTE
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2. Many of the interactions are highly directional
(as evidenced by the existence of crystalline
states). The distortions of the fields produced
at crystalline irregularities (such as surfaces) are
not easily defined.

3. The interactions are highly sensitive to external 1in-
fluences such as temperature and stress.

4. The exact composition of surfaces in contact 1s seldom
known. Even with chemically pure substances., a state
of surface contamination almost always exists which
markedly influences the interactions.

B. Practical Considerations

The foregoing discussion neglected a number of physical
realities. Specifically, the contributions of the bulk material
properties and environmental conditions were depreciated. 1In
real situations, surfaces are monumentally rough on a molecular
scale. In addition to modifying the directional effects of the
bonding forces, this roughness emphasizes the effects of the
bulk material properties. Although these properties may also
be described in terms of atomic field interactions, the usual

state of heterogeniety and crystalline imperfection of engineer-

ing materials makes the discussion simpler in terms of "engineer-

ing" properties.

It is generally recognized that, through contamination.
the surface layers of solids exist in a chemical and physical
state considerably different from that of the bulk material.
In the absence of bulk material influences, the friction pro-
perties would be determined solely by the surface state. How-
ever, in the application of pressure and motion to irregular
contacting bodies, considerable bulk deformation occurs. If
the deformation is small, and the surface state remains
essentially unchanged, little effect will be noted on the ad-
hesive component of friction. If, on the other hand, the sur-
face state is modified by bulk processes, friction may be

altered considerably.
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Examples of this may be seen in the sliding of two metals
separated by a thin film of chemically different species
(oxides or other). If the metals are hard and the film is soft
and pliable, deformation may occur without damage to the film.
Sliding usually occurs within the film or at the film-metal
interface. Friction remains unchanged as long as the film is
not worn away. If the film is hard and friable, contact will
occur between the two metals. Friction will then be determined
by the bonding between the metals as well as by the film.
Covalent bonds thus formed are usually weak and friction and
surface damage are low. If the bond is metallic, the friction
will be high and separation may occur within the bulk metal.
Thus surface damage occurs and the potential for further film
penetration increases. If the metals are soft, the deformation
will be increased, and thus the total number atoms in contact
will increase. ©Not only will this increase the total friction
of the film, but also metal displacement may take place within
the bulk, thus destroying the geometry required for low friction
sliding.

From this discussion, the general requirements for low
friction sliding, and the necessary material properties may be
established. These are listed in Table 3.

In practice, the differences between the requirements of
the interface and those of the substrate are usually
irreconcilable. Thus, current design practice is to use a two
component system; the structural material fulfills the substrate
requirements, and an artifical or natural surface film provides
the necessary interfacial conditions. This imposes an additional
requirement to describe the necessary film-substrate relation-
ship; maintenance of a continuous film in the area of contact
at all times. The methods currently used for supplying and

maintaining surface films are listed in Table 4. The ranges of

1HT RESEARCH INSTITUTE
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usefulness and design considerations of one component (without

film) and two component systems (with film) are described in

Section IV of this report.

The problems associated with development of low friction

surfaces are many in number. They are briefly summarized belows:

1. The molecular interactions leading to friction forces
are complex and poorly understood. Thus, the required
surface properties of materials are poorly defined.

2. The empirical process of finding and applying materials
with good friction properties under certain environ-
mental conditions does not assure good performance
under all environmental conditions.

3. Low friction materials derived by empirical processes
generally have undesirable secondary properties which
limit their utility.

4., Empirical studies of low friction materials limits
the ultimate performance to naturally occurring
phenomena: i.e., barring accidental discovery, a
lower limit is set on friction between surfaces by
the naturally occurring force field interactions.

C. Techniques to Develop Desirable Friction Properties
Of Materials

From the above discussion, development of materials with
good friction properties must be preceded by a better under-
standing of the molecular interactions which give rise to
friction. When this is accomplished, molecular properties can
be adjusted to produce the desired effects. That this is with-
in our present technical capability is evidenced by the develop-
ment of semi-conducting electronic and superconducting devices

and by advances in polymer synthesis.

Two approaches are envisioned. The first is to investigate
those existing materials with low friction properties to de-
termine the molecular interactions taking place. Then, the
interactions may be extended in degree and/or artificially in-

duced in other materials with more desirable secondary propertlies.
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The second approach is to theoretically establish the desired
interactions and to promote them by altering the molecular
properties of existing materials. A more detailed discussion
of these approaches is provided in Part II of this report.

The first approach is being investigated by several re-

searchers(l—4).

The general feasibility of this approach was
demonstrated by preliminary experiments conducted on this pro-

gram. The results are also given in Part II.

No current programs involving the second approach were
disclosed in the literature search conducted in this program.
However, the general feasibility is established in Part II,

and investigations of molecular interactions which apply to

this technique are reported in the literature(5_8).
HIT RESEARCH INSTITUTE
17 K6055

Final Report



REFERENCES

Lubrication Studies with Lamellar Solids. P. J. Bryant.
ASD-TDR-63-55, Part II, January 1963.

Research on Friction and Wear Characteristics of Materials
Under Ultra High Vacuum and High Temperature Conditions

D. G. Flom, A. J. Haltner, and C. A, Gaulin, ML-TDR-64-28
March, 1964.

Mechano-Chemical Factors in MoS; Film Lubrication. G.
Salomon, A. W. J. Degree, and J. H. Zatt, Wear 7. (1964) .
87-101.

Some Observations on the Frictional Behavior of Boron
Nitride and of Graphite, G. W. Rowe, Wear 3. (1960).

Concerning the Statistical Calculation of Cohesive Energies
of Ionic Crystals, P. O. Froman, Ark. Fys, 9. (1954) 93.9.

A New Approach to Lattice Dynamics of Metals., B. Dayal
and B. B. Tripazhi, J. Sci. Res. Banaras Hindu Univ. .
12, 2, 1961-62, 241-4.

Interactions Between Molecules Adsorbed on a Surface O
Sinanoglu. and K. S. Pitzer, J. Chem. Phys., 32. 5. May
1960, 1279-88.

Contact Potential Measurements on Graphite. A. B. Fowler.
J. Appl. Phys., 29, 7, July 1958, 1132.

IH'T RESEARCH INSTITUTE

18 K6055
Final Report




IV. DESIGN PARAMETERS FOR EXISTING ANTI-FRICTION
TECHNIQUES

A. 0il Lubricated Devices

1. Basic Design Considerations

The desire to use 0il (and grease) lubricated devices in
space needs no justification. The high level of reliability
and development for earth-bound applications makes them the
logical choices for extension to space hardware. However, the
extrapolation is not straightforward, even when the limitations
of high volatility and radiation degradation are overcome.

Limited evidence exists(l’z)

that oils will not lubricate under
boundary conditions unless a contaminant film exists on the
metal surface. Normally, sufficient oxygen and other reactant
molecules are dissolved in the oil or supplied by outgassing

to replenish the contaminant film as it is worn away. Even

in vacuum tests, the effects of contaminant depletion may

not become evident for realistic test periods. However, the
increasing use of superrefined fluids and the long term oOpera-

tional requirements of space hardware demand consideration of
this problem.

The vacuum evaporation rates from bulk fluids and from
bearings have been adequately investigated and reported.
Similarly, radiation and thermal stability limits have been
established. These data for the more promising lubricants
are summarized in Table 5. Additional data may be found in

References 3 through 11.

Various techniques have been developed for minimizing the
loss of lubricants through volatilization, and for replenishing

the lubricants as they evaporate. These are summarized in
Table 6.
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TABLE 6 - OIL LUBRICATION TECHNIQUES

A, Loss Limiting Technigues

Hermetic Encapsulation

.  Rubbing Seals

Labyrinth Seals
Molecular Pump Type Seals
Liquid Metal Seals

G w b=
L] e ” -

B. Loss Replenishing Techniques

1. Grease Packing

2. 0il Impregnated Structural Members

3. Wicking from Remote Reservoirs

4., Controlled Evaporation Condensation from
Remote Reservoirs

Two of the most promising replenishment techniques are wicking
from a sealed reservoir and controlled evaporation-condensation.

These techniques are shown schematically in Figs. 4 and 5.

The wick feeds lubricant at a constant rate by capillarity
(Fig. 4). The evaporation-condensation technique (Fig. 5)
feeds lubricant by evaporation from the surface of a porous
membrane and by subsequent condensation on the bearing surface.

The membrane surface is kept wet by diffusion from the reservoir.

Problems arise with all reservoir techniques from in-
cluded air at atmospheric pressure which must escape as the

external pressure diminishes.

In addition to evaporation, lubricants can be lost through
creep along surfaces which have been denuded by evaporation.
Low surface energy creep barriers (such as teflon) can be in-

corporated on bearing housings and shafts to control this loss.

Greases have long been used as lubricants, However, the

thickeners contribute nothing towards lubrication and merely
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act as a reservoir for the oil. Considering their problems
of radiation and thermal instability and the limited reservoir

capacity, their utility for space applications is limited.

2. State of Development and Performance Potential

Liquid lubricants have positive advantages for producing
low friction in space mechanisms. However, their use 1s re-
stricted to a narrow range of temperatures. Good design
practices can minimize their loss through evaporation, and re-
pPlenishment techniques can extend the useful life almost
indefinitely. The interfacial chemical reactions occurring
between the lubricant, the bearing surfaces and the gaseous
environment which are necessary to insure long term operation
are obscure. These must be defined before reliability in space

can be assured.
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B. Unlubricated Devices

1. Basic Design Considerations

An unlubricated device is one whose friction and wear
characteristics are determined by the properties of the
materials of construction and not by the presence of any
artificially introduced surface films. The need for this
clarification arises from hardware design considerations, and

not from any inherent differences in the mechanism of friction.

In some applications, it is possible to employ materials
with low inherent friction and wear as structural elements
(i.,e., cams, latches, bushings). In others, constructional
problems dictate the manufacture of structural elements from
materials whose friction and wear characteristics must be
modified to obtain acceptable performance (i.e.., ball bearings.
gears, sliding electrical contacts). The following discussion

pertains to the former class of devices.

a. Solid Organic Materials

Many organic materials have been used in unlubricated
sliding, both as structural materials and as thin films applied
to metal substrates. The advantages of their use are:

1. Low inherent friction

2. Good performance under marginal lubrication
3. Good damping characteristics

The major disadvantages are:

1. Poor thermal conductivity
2, Poor dimensional stability
3. Large differences in thermal expansion coefficients
from metals
The disadvantages have led to blending of the substances
with inorganic materials to improve performance characteristics.
Complete listing of the properties and performance characteristics

is beyond the scope of this report. Summary data on materials
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for space applications are listed i1n Table 7. These data are
representative values and should not be used for design pur-
poses. More comprehensive design data can be obtained from
References 1 through 4. and from manufacturers-® literature.
Information on materials properties 1n space are found 1in

References 5 through 11.

The lowest friction of any plastic 1s provided by Teflon.
The major limitations 1n its use are thermal degradation from
frictional heating and 1its poor dimensional stability under
load (cold flow). Addition of metal fillers 1mproves 1its
mechanical properties and 1ncreases the thermal conductivity
(thereby decreasing 1nterfacial temperatures). but also in-
creases friction. Optimum performance 1s provided by a thin
film of Teflon on a metal substrate The recent development
of polyimides represents an improvement in mechanical pro-

(12)‘

perties New fluorocarbons are under development although

no design data are currently available.

b. Inorganic Materials

Ceramics and cermets offer advantages for use i1n space due
to their high hardness. high temperature stability and minimum
cold welding tendencies. Disadvantages arise from their high
friction and brittleness. Best use 1s made of these materials
as high temperature rolling elements for bearings, although
their fatigue life 1s low and failure is almost always

catastrophic. Typical performance characteristics are listed
in Table 8.

c. Composites

The more desirable properties of two or more materials may

be obtained by combining the materials 1n a composite structure.

The structures may have the following forms:

1. Metals incorporating microinclusions
2. Sintered powdered metals impregnated with:
a. oils
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b. solid organic lubricants
¢. solid inorganic lukricants
3. Porous ceramics impregr.ated withs

a. solid organic lubr.cants
b. solid inorganic lubricants

4. Inorganic fiber structures incorporatings
a. solid organic lubricants

b. solid inorganic lubricants
5. Sintered organic powcers impregnated withs

a. oils
b. solid organic lubricants
c. solid inorganic lubricants

6. Compressed powder mixtures ofs:

a. metals

b. s0lid organic lubricants

c. so0lid 1inorganic lubricants
The performance of typical composites are summarized 1in
Table 9. The basic scheme is to take a satisfactory structural
material and to combine with it a sufficient amount of material
with low friction properties to assure satisfadtory performance.
In general, it 1s desirable to incorporate a substance which
will form a continuous film over the interface under the
action of sliding, so that the structural materials do not
contact. The number of possible combinations 1s infinite and
the designer is referred to References 1-5, and 7-10 for

specific applications.

Performance characteristics of composite structures are
usually a compromise between those of the structural material
and those of the filler material. Temperature and radiation

tolerance limits are usually established by the weaker of the

two.
2. State of Development and Performance Potential

The use of organic materials as structural bearing elements
offers no great potential for space mechanisms. It does not

appear that new polymer formulations can overcome the thermal
problems associated with vacuum operation. The use of teflon
in so0lid film lubricant composites has some advantage, as 1s

discussed in Section C, Solid Film Lubricated Devices.
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Ceramics and cermets seem to offer great potential for
future space bearings. The atomic bonding i1s primarily
1onic or covalent, which gives them their high stability and
hardness. Slight adjustments in the structure of these
materials could markedly improve their friction and reduce their

brittleness.

Table 10 summarizes the operational characteristics of

unlubricated devices.
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C, Solid Film Lubricated Devices

1. Basic Design Considerations

It was stated in Section II that by providing a f£ilm of
solid material with low friction properties on a substrate
of high hardness, acceptable friction performance can be
effected. This technique has received considerable attention
for space devices and countless numbers of materials and
application methods have been investigated. The major pro-
blems have been short wear lives and lack of reproducibility

of performance,

The various techniques for lubricating with solid films
are lisced in Table 11. ' The materials which show the best
performance characteristics for each technique are also listed.
The principles underlying each technique and their limitations

are discussed below.

a. Chemically Reacted Films

In this technique, lubricant films are formed by chemical
reaction of the surface layer of the bearing material with a
vapor or liquid. Such films are thin and easily worn away,
thus requiring continuous or periodic replenishment for

severe duty.

Materials such as vapors of carbamates and amines show

good potential with low flow rates(2’3)o Light weight re-

servolr systems can probably be developed which will make
this technique useable, but the state of development is low.
Inclusion of MoS, yielding compounds in oils offers a method
of improving the reliability of 0il lubricated devices, but
does not solve the problems of volatility and radiation

damage associated with oil lubrication,

b. Self-Adhering Films

Of the various technidques for using self-adhering films,

only soft metal platings and transfer film techniques have
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any real application to space mechanisms. Thin films (1 micron
thickness) of low shear strength metal, applied to hard bear-

ing materials can effect good friction performance in rolling

bearings for many thousands of hours. The use of gold(lo)
probably compromises low friction (low shear strength) for
good wear life (high hardness) and chemical inertness. 1In
many applications, superior friction performance could be

effected by using metals (lead, bismuth(l4), barium(l3) or

(12))0

Films of solid lubricant applied by transfer during slid-

gallium

ing provide excellent long term operation of bearings and
gears. The films are transferred to load bearing elements by
rubbing against a lightly loaded secondary member (bearing re-
tainer, idler gear) made from the solid lubricant material.
Generally, two classes of material are used together; a layer
lamellar powder (MoS2, graphite, etc.) and a film former
(teflon, nylon) to hold the powder in place. Such materials
are available commercially(zg) and from research labs operating

(17918). Members made from these

under government contract
materials are generally weaker than other parts and may suffer

structural damage if loading is high.

c. Bonded Scolid Films

A widely used and generally satisfactory technique for
applying solid lubricant films is to bond them to the load
bearing surfaces with an organic or inorganic binder.
Excellent results have been achieved with a mixture of MoS,,

graphite and gold flakes bound with a sodium silicate

binder(23’25’3o). Other bonded coatings are available com-

(26-28)

mercially Special surface preparation is required for

optimum performance with bonded coatlngs(23’24’26)e
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2. State of Development and Performance Potential

Four techniques appear promising for solid film lubrication

of space mechanisms; reaction films, thin metal films, transfer
films., and bonded solid films. The first two have recieved in-
sufficient attention to make them generally practical. Both
offer potential for meeting high temperature requirements.

The bonded film has been developed to the point where good
performance and reliability are readily achieved. The
particular mixture discussed above which gives best results
cannot be rationalized on theoretical grounds; therefore, its

ultimate performance potential cannot be established.

Ranges of performance and operational characteristics for
these techniques are listed in Table 12.
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D. Flexure Devices

1. Basic Design Considerations

Many of the problems of space operation of mechanical com-
ponents can be circumvented by avoiding sliding entirely. For
mechanisms requiring only limited rotation or translation,
flexure devices can often be used to great advantage. These
devices utilize the elastic properties of structural members
to provide constrained relative motion. The advantages of this
technique for space applications are the high bearing load to

weight ratios for simple configurations, the relative in-

sensitivity to the space environment, and the inherent reliabiiity

and unlimited life of the devices. The major disadvantages are
limitations on angular rotation and translation, and (in the
simplest configurations) the presence of a restoring force act-

ing against the motion.

The simplest configurations of flexure devices are shown

in Figs. 6 through 13.
a. Rotation

1. Emery Fulcrum

The simplest form of flexure pivot is the Emery
Fulcrum (Fig. 6). Under the action of a transverse load, P,
the beam will deflect giving a rotation of the axis of the
normal load, Pp. The major disadvantages of this support are:

a. The bending stresses in the material produce a re-

storing moment proportional to the angle of
rotation.

b. The center of rotation changes position as de-
flection takes place.

c. Stiffness in torsion about the normal load Pn is
small.
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The Emery Fulcrum has found wide application in

(1)

torsion balances and other applications where small angles
of rotation are required. Further design information may be

found in References 1 through 3.

2. Compensated Emery Fulcrum

The first disadvantage to the Emery Fulcrum may be
remedied by adding a compensating moment which cancels the re-

storing moment. Figure 7 shows how this may be accomplished

using counterweights. For zero gravity applications, additional

flexure pivots are required to provide the compensating

moment.

3. Cross Spring Pivot

A single axis flexure pivot with fixed center of ro-
tation (remedy for disadvantage "b") is illustrated in Fig. 8.
Such devices are useful for up to 90° rotation. Applications
for cross spring pivots include universal joints, mechanical

linkage for instruments, gimbal joints for rocket engines

and gyro tables, torsion balance fulcrums and hinge pins. Small

units for limited load and rotation are available commercially
Their useful design characteristics are summarized in Table
13. Complete design data for other load and deflection ranges

may be found in References 1,4, and 5.

Disadvantage "c" may be overcome by applying three (or
more) strips to the pivot as in Fig. 9, thus increasing the

torsional stiffness about Pn.

4. Spoked Pivot

Three axis rotation with fixed center may be provided
with a "bicycle wheel" suspension as illustrated in Fig. 10.
Wire spokes are arranged in two cones with a common vertex.
The suspension acts as a spherical bearing, with very little

restoring moment.
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TABLE 13 - LOADS AND SPRING RATES FOR STANDARD PIVOTS (FIG. 9)*

Maximum SPRING RATE
Diameter Deflection Maximum Load (kg-cm/ (lb-iny/
(mm) (in.) (+ Degrees) (kg) (1b ) radian) radian)
3.175 1/8 7-1/2 11.341 25.0 0.922 0.800
3.175 1/8 15 5.671 12.5 0.155 0.100
3.175 1/8 30 1.588 3.5 0.013 0.011
4.763 1/4 7-1/2 25.4009 100.0 3.120 6.540
4.763 1/4 15 12,702 50.0 0.376 0.817
4,763 1/4 30 3.085 14.0 0.047 0.102
12.700 1/2 7-1/2 181.457 400.0 25,400 52.000
12.700 1/2 15 90.729 200.0 3.170 6.500
12.700 1/2 30 25,540 56.3 0.381 0.813
19.050 3/4 7-1.2 408.279 900.0 210.000 182.000
19.056 3/4 15 204.140 450.0 26.300 22.800
19.056 3/4 30 57.613 127.0 3.280 2.850
25,400 1 7-1/2 725.829 1600.0 497,000 431.000
25,400 1 15 362.915 800.0 62.000 53.800
25,400 1 30 102.070 225.0 7.760 6.730
*From Reference 7
K6055
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A device of this type was used as the gimbal bearing

(8)

1n the 200 inch Mt. Palomar Telescope.
b. Translation

Limited parallel translation may be obtained with a simple
flexure device as shown in Fig. 11l. However, in this case, the
line of action of Pt must move closer to the base as translation
occurs.

More nearly rectilinear motion 1s achieved with the
apparatus shown in Fig. 12. In both of these apparatuses,
stiffness perpendicular to the applied load is poor. Appli-
cations for these mechanisms include wind tunnel model con-

straint and force measuring apparatus(l’3)o

(6)

Dunk proposes the apparatus shown in Fig. 13, which
gives good stiffness in all transverse planes, but adds

slight rotation to the moving element.

Design data for these devices may be found in References
1.2,3, and 6.

2. State of Development and Performance Potential

Flexure devices have long been used to support light loads
in instrument applications. The theory behind their use is
well defined, and the load ranges can be readily extended
upwards. The only foreseeable problem concerns their use
at high temperatures. Most materials undergo stress relaxation

at approximately 1/2 their melting point.

Columbium alloys appear most promising; they retain elastic
moduli of 4.4 x 108 kg/mm2
to 1650°K.

(1.5 x lO6 psi) at temperatures up

A wide range of space hardware applications exists in which
flexure devices could be used effectively. The low utilization

of these devices to date can probably be attributed to lack of
communication, rather than to any inherent limitations in the

mechanisms. Table 14 summarizes the range of conditions and

operational characteristics of the various mechanisms.
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L. Basic _Design Considerations

The use of forces established by magnetic and electrical
fields offers a method for providing bearing support with al-
most no friction  However. the utility of this technique 1s
limited for space applications The most formidable restriction
1s that a system utilizing electrostatic or magnetostatic
support cannot be stabilized along three axes 1f the dielectric
constant and relative permeability of the materials of con-
struction are greater than one. Since virtually all engineer-
1ng materials fall into this category. other types of bearing

support must be provided along at least one axis Other re-

strictions stem from power requirements for electric and electro-

magnetic supports. we:ght penalties for permanent magnets.
and the inherently low bearing stresses which these devices

can tolerate

Electric and magnetic fields can be oriented to provide
elther attractive or repulsive forces. the choice for a
particular application depends on the geometry of the support
and the materials used Out of the many configurations which
are possible, only a few offer any engineering feasibility.
These are illustrated schematically in Figs 14 through 18,
Only the major support 1s shown; the additional constraints
indicated must be provided either mechanically or by additional
servo-controlled fields Table 15 lists the maximum bearing
stress predicted by theoretical considerations using existing
materials. References for further design and analysils are

also listed in Table 15
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The maximum bearing stress possible for magnetic support
is limited by the maximum flux density, B, which can be pro-
vided at the bearing surfaces according to the formula:

o = 4.1x 10710 g2 (kg/mmz)

s = 5.77 x 10~ B% (#/in.?%)

where B is given in gausses.

Currently available permanent magnetic materials have
a maximum residual flux density of about 12,000 gausses.
Geometric and other factors limit the useful flux density
to about 10,000 gausses, limiting the bearing stress to
0.042 kg/mm2(60 psi). Electromagnhets can provide flux
densities approaching the saturation point of the core
material, approximately 20,000 gausses, giving maximum bear-
ing stresses of 0.17 kg/mm2 (240 psi). The penalty for the
increased bearing load capacity is the additional weight of the
magnet windings and power supplies. The use of superconduct-
ing elements reduces the weight of the bearing support
elements and provides an inherently stable bearing (since the
permeability is essentially zero). Recently developed super-
conducting materials (Niobium Stannide) permit flux densities

in excess of 100,000 gausses at temperatures up to l8°K(l3),

2

producing bearing stresses of 4.2 kg/mm~ (6000 psi) or greater.

Electric support is limited in air by the dielectric
strength of air (3 x 106 volts/m) and in vacuum by field

emission (c.a. 3 x 1077 volts/m). The bearing stress for a

given field strength, E, is:

9 x 1072 E? (kg/mm?)

Q
I

o = 1.28 x lO—15 E2 (#/inoz)
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where E is given in volts/m. Thus the maximum attainable
bearing stress is 7.8 x 1074 kg/mm2 (1.1 psi). The power
supplies for maintaining voltages greater than 10,000 volts
is an added weight penalty. A novel (and as yet untried)
method of electric support without power supplies is the use
of electrets, or persistent polarization in dielectrics.
Permanent surface charge densities of 1.5 x lO"4 coulombs/m2
have been achieved on certain ceramics with this technique.

These charge densities, when induced on both bearing surfaces,

could provide bearing support stresses 5.1 x.lO'4 kg/mm2
(0.73 psi).
2. State of Development and Performance Potential

The use of magnetic and electric bearings has thus far
been limited to specific instrument applications where the
high cost of development and low load capabilities are out-
weighed by the almost zero friction which these devices can

(14)

provide. One commercial magnetic bearing which uses
permanent magnets to support radial loads and servo-controlled
electromagnets for axial loading. and several experimental
magnetic bearings have been analyzed for load carrying per-
formance characteristics. These are summarized in Table 16.
It is noted that, at least in one case, the magnet design

was inoptimum. The analysis showed that the performance

of this bearing could be improved considerably by altering the
magnet design and that large bearing loads can be supported
more efficiently with large numbers of small magnets than
with large magnets. Also included in the table are the per-
formance characteristics of an electrically supported gyro-

scope rotor.

At their present level of development, electric and
magnetic support systems have limited utility in space.
Table 17 summarizes the characteristics, limitations and useful

ranges of bearing systems employing these techniques. Recent
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developments in permanent magnet materials have yielded only
modest increases in energy content and maximum flux densities.

Prospects are dim for major improvements.

Advances in superconducting magnets are more significant.
However, the requirement that the entire rotor mass be kept at
cryogenic temperatures in any realistic superconducting bear-
ing configuration limits the utility of this technique. The
low load capability of electric supports, combined with the
weight penalties associated with maintenance of high
potentials limits the number of applications for these devices.
The use of electrets offers an interesting possibility for

further developments in electric support.

1T RESEARCH INSTITUTE

68 K6055
Final Report




10.

11.

120

13.

14!)

15.

REFERENCES

Magnetic Bearings for Aerospace Applications, ASD-TDR-63-
474, May 1963 (ASTIA Document No. AD 412813).

Permanent Magnet Design, Thomas and Skinner, Inc., Bulletin
M303, 1962.

Permanent Magnet Design Manual, PM-125, General Electric
Co., Magnetic Materials Section, 1957.

Investigation of the Parameters of a Magnetostatic Bearing,
F. Freis, IIT Research Institute Report No. IITRI-FR-K939,
November 1, 1963,

Investigation of Magnetic and Electric Forces for Rotating
Shaft Suspension, ASD-TDR-62-441, May 1962 (ASTIA
Document No. AD 277202).

Research Investigation of Magnetic and Electric Forces for
Rotating Shaft Suspension, Report No. EMI-4454-111-63U,
Research Laboratories for the Engineering Sciences,
University of Virginia, Charlottesville, March 1963,

Electromagnetic Devices, H. C. Roters, Wiley & Sons, New
York, 1941.

The Cryogenic Gyro, J. T. Harding & R. H. Tuffias, Advances
in Cryogenic Engineering, Volume, C. Plenum Press, New
York, 1961.

Superconducting Magnets, V. D. Arp & R. H. Kropschot, Ibid 8,

Superconducting Frictionless Magnetic Bearings, D. F.
Wilcock, 1963 USAF Aerospace Fluids and Lubricants Confer-
ence, San Antinio, Texas, April 16-19, 1963.

The Electric Vacuum Gyro. H. W. Knobel, Control Engineering,
February 1964, 70-73,

Electrets, Part 1, A State-of-the-Art Survey, V. A. Johnson,
Harry Diamond Laboratories Report TR-1045, August 31, 1962,
(ASTIA Document No. AD-2999259).

Superconducting Ribbon: High Amperage in a Flexible Carrier,
Research/Development, 14, 9, September 1963, 44,

Descriptive Literature, Mag-Centric Magnetic Bearing,
Cambridge Thermionic Corp., Cambridge, Mass., 1963.

A Magnetic Journal Bearing, F. T. Backers, Philips
Technical Review, 22, 7, 1960/1, 232-8,

69 K6055
Final Report



F. Fluid Film Lubricated Devices

1. Basic Design Considerations

The environment of space places a severe limitation on
the use of fluid bearings as known on earth. The loss of
lubricant due to vaporization and the extremes in temperature,
both low and high, leave only a few special applications where
fluid bearings are feasible or advantageous over other types

of bearings and lubrication systems.

Fluid bearings can be calssified according to the state
of the fluid used, i.e., liquid or gas, and these in turn
can be classified into self acting (hydrodynamic and pneumo-
dynamic) and externally actuated (hydrostatic and pneumo-
static). Self acting fluid bearings do not require external
power to operate except if circulation of the lubricant is
required (an extremely small power requirement in most cases) .
Externally actuated bearings, on the other hand, require an
external energy source in order for operation. The energy
source can be electrical (pressurized gas tank), mechanical
(spring or flywheel), or chemical (burning of a gas-producing

propellant).

Since the availability of power in a space vehicle is
rather limited, a large, long lived externally actuated
bearing does not seem feasible, even in a closed loop where
the fluid is used over and ove£ again. However, it may be
possible to design practical bearings for many hours of
operation 1f they are small enough and if the weight and

space penalty can be tolerated.

The temperature range in which fluid bearings can operate
successfully ranges from cryogenic temperatures up to the
highest temperatures required. However, no single fluid (with
the exception of Helium) can operate throughout the whole

range. Gases are by far the fluids with the widest temperature
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operating range. Liquids are much more restricted because

of phase changes and decomposition.

Table 18 gives a summary of the operating temperature

ranges for several fluids that can be used in fluid bearings.

TABLE 18 - TEMPERATURE RANGES FOR VARIOUS FLUIDS

Fluid Min. Temp. Max. Temp.
Gases (Helium) 20°K 1650°+4K
Cryogenic Fluids 20°K 150°K
Lubricants (synthetic, natural) 220°K 770°K
Liquid Metals 700°K 1100°K
a. Self Acting Liquid Bearings

The limitations of a hydrodynamic bearing are governed
by speed, temperature and pressure. Excessive speed will re-
sult in turbulence with a considerable increase in heat
generation and the consequent power loss. The temperature
limitations are determined by the fluid used, there existing
both a lower and upper limit, which will depend on the
viscosity-temperature properties of the fluid, thermal de-
gradation characteristics, chemical activity, and possible
phase changes. Very low ambient pressures can also limit
the use of a liquid lubricant due to vaporization loss and

cavitation.

The inherently low ambient pressure of a space environ-
ment limits the use of liquid bearings to either a temporary
application (i.e., until the lubricant is exhausted), or to
the inside of a hermetically sealed container. The operation

of a liquid bearing inside a sealed container in space would
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be no different from one on earth, except for the temperature
extremes, lack of gravitational forces, and high particulate
radiation environment. The absence of gravitational forces
would hardly affect the bearing itself but proper care should
be taken in the design of the fluid reservoir. If the lubri-
cating fluid is carefully selected, it will not be affected

by particulate radiation.

b. Externally Pressurized Liquid Bearing

Externally pressurized liquid bearings, commonly
referred to as hydrostatic bearings, have basically the same
limitations with respect to speed, temperature and pressure
as self acting liquid bearings. They have the advantage
of a load carrying capacity independent of speed, and also
allow more freedom of design with respect to configuration.
Their main disadvantage is the requirement of an external
power source to provide the pressurized fluid needed to

support the load.

As in the case of hydrodynamic bearings, two possibilities
exist with regard to the installation of a hydrostatic bearings:
(1) sealed inside the vehicle, and (2) exposed to the vacuum
of space. Since the flow of lubricant through a hydrostatic
bearing is much higher than that through a hydrodynamic one,
it is reasonable to expect a higher rate of lubricant loss
by evaporation with this type of bearing. If the fluid is
not recirculated, i.e., "once through" lubrication is used,
then the rate of lubricant loss equals the total flow through
the bearing, which can be considerable. Since the lubricant
supply aboard a space vehicle is necessarily limited, the
application of this type of bearing will be limited to either

very small loads or to very short operating periods.

Sealed hydrostatic bearings will not experience lubri-
cant losses, but will still require external power for

operation.
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C. Self Acting Gas Bearings

Gas bearings offer the widest operating temperature
ranges of all known bearings. If a gas with a low boiling
temperature such as helium is used, the bearing could operate
from temperatures as low as 15°K up to the highest temperature
the bearing material could withstand without limitations

being imposed by the fluid.

Self acting gas bearings do not require an external
power source to maintain a load carrying capacity. However,
their load carrying capacity is inherently low and not com-
parable to that of liquid bearings. The practical limit unit
load of 15 psi has been advanced by some authors (l), and the
practical rule of "one (1.0) psi load capacity per 100 rpm
per %gfh of diameter per 1000°F" has been suggested by

Mack . For spiral groove bearings, the load capacity is

about 0.4 psi instead of 1.0 psi.

Self acting gas bearings are used in applications where
speeds are high and loads are small. Under these conditions
liquid bearings are not suitable because of the large viscous
drag and high power dissipations. Further problems are intro-
duced by the turbulence characteristics of high rotational

speeds.*

As in the case of liquid bearings, gas bearings require a
fluid media which is not available in space, and must there-
fore carry their own. Again, two methods of operation can be
conceived: hermetically sealed and vented to space. The

first case would not differ materially from the systems used

The viscous drag of a gas bearing is much less than of a
comparable liquid bearing at the same speed. However, if
the drag is compared for the same load carrying capacity,
then the coefficient of friction (i.e., the ratio of
friction or viscous drag force to load) will be larger for
the gas bearing.
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on normal earth environments, while the second would have to
cope with the loss of gas through the seals, and which will
have to be replenished from a reservoir to maintain adequate

operating pressure.

Besides the small load carrying capacity inherent with
gas bearings, there are other serious limitations that impose
further restrictions in their use. The damping characteristics
of gas bearings are rather poor, and this in turn coupled
with the compressibility of the fluid media may give rise
to rotor instability. It is also a characteristic of gas
bearings that the clearances between rotor and bearing be
small, of the order of less than .00l in. Small clearances
not only introduce production and assembly difficulties,
but they also increase the contamination sensitivity of the
bearing and require careful filtering of the gas. A good
surface finish, of the order of a few microinches is also
necessary. If the bearing is to last a relatively long time,
1t 1s also necessary to insure that the bearing materials are
dimensionally stable, so that the dimensions do not change
appreciably during use or storage. Finally, extreme care
should be excersized during design of the bearing to avoid
differential thermal expansion of the shaft and sleeve when

the temperature varies over a wide range.

Since a high relative speed is required for self acting
bearing operation, practical configurations are restricted

to journal, radial, conical or spherical bearings.

d. Externally Pressurized Gas Bearinhgs

Externally pressurized gas bearings or pneumostatic bear-
ings, have many of the characteristics common to self acting
bearings. Clearances are small, damping is poor, and instability
is often present; temperature range is wide, and the viscous

drag can be very low, depending on the speed of the bearing.
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Unlike self acting bearings, their load carrying capacity
is independent of speed. However, an external power source

or storage is required for operation.

Two modes of operation can be conceived for pneumostatic
bearings, "once through" flow (vented to space), and flow with
recirculation. A bearing with "once through" flow would
necessarily be either very small or very short lived, since
the storage capacity of gases in a space vehicle is very
limited. If the gas is used over and over again, then it is
necessary to have a power supply available to compress it to
the required operating pressure. This requirement will limit
the use of pneumostatic bearings to rather small or extremely
important applications, since again the power available in

a space vehicle is limited.

Since the load carrying capacity of pneumostatic bearings

is independent of speed and dependent only on size and supply

pressure, more freedom of design is possible and many different

bearing configurations are practical. Pneumostatic bearings

can be made in the form of journals, radial, conical, spherical,

rectangular pads, bearings. etc. Configurations are limited

only by the skill and imagination of the designer.

If the relative velocity between the elements of the
bearings is low, viscous drag will be negligible, thus offer-
ing a system with the minimum possible friction. This is the
main advantage of pneumostatic bearings, indicating its use
in applications where friction must be minimized but the speed
is relatively low, or where a gas must be used as lubricant,
but the speed is too low to operate a self acting bearing

effectively.

It seems rather unlikely that the need for heavily
loaded bearings will arise in the gravity free environment

of space. The type of loads encountered in space will be of a
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dynamic nature, such as centrifugal forces, jet reactions,
etc. In many cases the bearings will act more as guiding
devices, i.e., maintaining concentricity or alignment of

lightly loaded components, rather than load carrying members.

Taking a single-axis gyro as a typical example of space
application, it is possible to make some simple calculations
about power, weight and volume required for different bearings

and its peripheral equipment, if any.

A typical hydrostatic gas bearing, to support the gimbal
axis of a single-axis gyro, will consume approximately .7 cfm
of standard air at 32 psig plenum pressure when orifice re-
gulation is used., or .15 cfm if slit regulation is used
instead(3)L A gas floated spinning sphere may consume
approximately .05 cfm when supported by four or six orifice

(3)

compensated pads .

The pressurized gas required for operation can be either
carried in a bottle and flow through the bearing once and be
vented, or could be recovered and repressurized in a cOmpressor.
In the first case, adequate supply must be carried to maintain
operation for the duration of the mission, and in the second,
sufficient internal power must be available to run the com-

pressor.

For the higher temperatures and large flow rates, the
power requirements are exceedingly high. Even for an inter-
mediate temperature such as 300°K, and an average flow rate,
say .3 cfm, the power needed to operate the bearing of just
one gyro would be around 50 watts. This is probably more than
can be spared to run the bearings from the meager vehicle

power supply.

A considerably reduction in pumping or compressor power
demand is obtained when a condensable vapor is used as working
fluid in the bearing. This technique has been proposed(3)

for use aboard vehicles designed for missions of long duration.
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The scheme operates in a cycle resembling the Rankine power
cycle, except that the bearing is substituted for the turbine

or engine normally used in the Rankine cycle. The working fluid
must be readily vaporized at a reasonable temperature, and have
a low specific heat and heat of vaporization. Different grades
of Freons have been suggested as working fluids. They vaporize
at a relatively low temperature, yet not so low that condensa-
tion becomes difficult. They also have favorable chemical prop-
erties, i.e., non-toxic, non-flammable, compatible with most

materials, etc., and are readily available at reasonable cost.

The use of such a cycle would reduce the internal power
requirements by about two orders of magnitude (less than 0.1 watt
for comparable bearings), but requires a fair amount of heat
exchange with the environment in order to evaporate and condense
the working fluid. The cycle, shown schematically in Fig. 19,
consists of a condenser, a pump, an evaporator, a pressure regu-
lator, and the bearing.

T e o
VAW -

Condenser |_JF]__
Bearing
Power
'—-——
—’// Pump Pressure
Regulator
Evaporator

AN

T 1 1 f 1 Heat In

Fig. 19 PNEUMOSTATIC BEARING WITH VAPORIZABLE FLUID
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The condenser is simply a heat exchanger exposed to the dark
side of the vehicle where the working fluid loses heat at
constant pressure until it becomes a saturated liquid. The
pump transfers the liquid to the evaporator or boiler and in-
creases itspressure to the level required by the bearing.

The evaporator is also a heat exchanger, this time located on
the illuminated side of the vehicle, and where the fluid will
gain heat by radiation at a constant but higher pressure until
it becomes saturated, or even superheated vapor. Going through
the pressure regulator, whose function is to maintain correct
operating pressure, the pressurized vapor 1s throttled through
the bearing, thus loosing its pressure at constant enthalpy

and finally enters the condenser completing the cycle.

A variation of this cycle would be a scheme where the
mechanical pump 1s substituted by a capillary tube to force
the liquid into the evaporator at constant pressure. Once
the evaporator is charged, a valve closes and the phase change
proceeds at constant volume until the required operating pres-
sure is reached. Then a valve cracks open releasing vapor
at the required rate. This scheme is not a true thermodynamic
cycle and by necessity is of intermittent operation. Its main
advantage is that no internal power whatsoever 1is needed for
operation. All the energy requirements can be supplied by

the environment.

The thermal exchange requirements are not excessive. 1In
crder to supply .2 cfm of 32 psig vapor at 300°K, 1t 1is
necessary to add heat to the system at a rate of less than

100 watts and reject at about the same rate.

The reason why the vapor-liquid scheme is so conservative
of power is that the compression process is performed on a
liguid rather than a gas, with the consequent minimum of
energy storage in the fluid. One of its main advantages 1s

that the power required for operation can be obtained from
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space, since thermal energy can be utilized directly. Its main
disadvantage is the added complexity and weight of the heat

exchangers and other peripheral equipment.

Liquid or hydrostatic bearings, require much less power
than pneumostatic bearings to support the same load. For in-
stance, a pneumostatic thrust bearing 2 in. in diameter, en-
vironment pressure of 14.7 psi and pressure ratio of 6, can
support a load of about 93 1lbs with a gas flow rate of
.3 x 1073 1b/sec at 300°K if a clearance of around h = .0008 in.
1s maintained. The same load can be carried by a bearing of
the same size and clearance, operating with a fluid comparable
to SAE 5 light oil at 300°F (= 4.65 x lO_6 reyns, S.g. = .8)
with a flow rate of 3.58 x 107>

work required to operate the gas bearing is around 15.2 watts,

1b/sec. The ideal pumping

but the liquid bearing requires only about .9 watts to

support the same load.

2, State of Development and Performance Potential

The theory, utility and limitations of fluid film bearings
are well defined. The disadvantages of high power consumption
and fluid reservoir weight penalties associated with externally
pressurized bearings, limits their utility for space
mechanisms. The fluid film bearings offer little advantage
over equivalent antifriction bearings. The place of hydro-
dynamic bearings in space seems to lie in special applications
where a fluid is already available, and a compatible anti-
friction bearing cannot be found, or when the good damping
characteristics, or small space requirements of a fluid bear-

ing are necessary.

A summary of fluid film operating characteristics is

presented in Table 19.
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